Publicarea Datelor Deschise ale Observatorului Pierre Auger privind razele cosmice de cea mai înaltă energie

Foto Credit: Pierre Auger Observatory

Observatorul Pierre Auger publică 10% din datele înregistrate utilizând cel mai mare detector de radiații cosmice din lume. Aceste date sunt făcute publice în vederea utilizării lor de o comunitate cât mai largă și diversă, cuprinzând cercetători profesioniști și amatori, pentru inițiative de cercetare, educaționale și de outreach.

Colaborarea Pierre Auger a pus la dispozitia publicului larg datele colectate într-o manieră asemănătoare de mai bine de un deceniu, însa modul actual de publicare este mult mai performant în ceea ce privește calitatea și tipul de date, făcându-le utilizabile atât în scopuri educaționale cât și în cercetarea științifică. Datele pot fi accesate la adresa: www.auger.org/opendata [1]

Operarea Observatorului Pierre Auger de către o Colaborare de aproximativ 400 de oameni de știință din peste 90 de instituții din 18 țări din întreaga lume a condus la determinarea proprietăților razelor cosmice cu energiile cele mai înalte și cu o precizie fără precedent. Aceste particule cosmice sunt predominant nuclee ale elementelor obișnuite care ajung pe Pământ de la surse astrofizice. Datele de la Observator au fost utilizate pentru a demonstra că particulele de cea mai înalta energie au origine extragalactică. Spectrul de energie al razelor cosmice măsurate depășește 1020 eV ceea ce corespunde unei valori macroscopice de aproximativ 16 Jouli pentru o singura particulă. S-a demonstrat că există o scădere accentuată a fluxului de particule la energii înalte și există dovezi preliminare ale emisiei de la surse specifice din apropiere. Analizele datelor au permis caracterizarea tipului de particule cu asemenea energii remarcabile, care includ elemente de la hidrogen la siliciu. Datele pot fi deasemenea utilizate pentru a testa fizica particulelor la energii peste cele obținute la LHC.

La Observatorul hibrid Pierre Auger [2], localizat în Argentina, radiația cosmică este observată indirect, prin intermediul jerbelor de particule secundare produse la interacția particulei primare incidente cu atmosfera. Detectorul de Suprafață a Observatorului acoperă o arie de 3000 km2 și este alcătuit dintr-o rețea de detectori individuali de particule amplasați la o distanță de 1500 m unul de celălalt. Intregul Observator este încadrat de telescoapele care compun Detectorul de Fluorescență, sensibile la lumina de fluorescență, asemănătoare aurorelor, emisă pe masură ce jebele atmosferice se dezvoltă. Detectorul de Suprafață este sensibil la muonii, electronii și fotonii care ajung la nivelul solului. Datele de la Observator cuprind date brute (obținute direct de la aceste instrumente), seturi de date reconstruite generate prin analize detaliate și date prezentate în publicații științifice. Unele date sunt partajate în mod obișnuit cu alte observatoare pentru a permite efectuarea de analize utilizând multiple experimente care astfel acoperă tot cerul și pentru a facilita studii multi-mesager. 

După cum a subliniat purtătorul de cuvânt al colaborării, Ralph Engel, “datele de la Observatorul Pierre Auger, care a fost înființat acum mai bine de 20 de ani, sunt rezultatul unei investiții științifice, umane și financiare mari și de lungă durată de către o colaborare internațională foarte extinsă” ele fiind de o valoare remarcabilă la nivelul comunității științifice din întreaga lume”. Prin publicarea datelor și a programelor de analiză Colaborarea Auger îmbrățișează principiul conform căruia accesul deschis la date va permite, pe termen lung, valorificarea maximă a potențialului lor știintific.

Colaborarea Auger a adoptat o clasificare pe 4 nivele de compexitate a datelor, în raport cu cele utilizate în fizica energiilor înalte, și a adaptat-o la politica sa de acces public deschis.

(Nivelul 1) Publicații cu acces deschis cu date numerice suplimentare oferite pentru a facilita re-utilizarea lor [3];

(Nivelul 2) Publicarea periodică de date într-un format simplificat, pentru educație și outreach. Aceasta a inceput în 2007 când au fost publicate 1% din date, procent care a crescut la 10% în 2019 [4];

(Nivelul 3) Publicarea de date care reconstruiesc evenimentele produse de raze cosmice, obținute cu cele mai bune cunoștințe disponibile despre performanța detectorului și a condițiilor de la momentul înregistrării datelor. Exemple de coduri derivate din cele utilizate de Colaborare pentru publicarea analizelor sunt de asemenea oferite [5];

(Nivelul 4) Publicarea de date apropriate de cele brute asociate cu evenimentele înregistrate. Un browser de afișare a evenimentelor si coduri de citire a datelor sunt de asemenea disponibile [6].

Ultimele nivele de informații adăugate în prezent [1] includ date de la două instrumente majore ale Observatorului: Detectorul de Suprafață dispus pe 1500 m2 și Detectorul de Fluorescență. Setul de date constă în 10% din toate evenimentele înregistrate la Observator, supuse acelorași proceduri de selecție și reconstrucție utilizate de Colaborare în publicații recente. Perioadele de înregistrare a datelor sunt aceleași cu cele utilizate pentru obținerea rezultatelor științifice prezentate la Conferința Internațională de Radiație Cosmică care a avut loc în 2019. Exemplele de analize folosesc versiuni actualizate de seturi de date Auger, care diferă ușor de cele utilizate pentru publicații din cauza unor îmbunătățiri ulterioare a reconstrucției și calibrării. Pe de altă parte, cum procentul de date disponibil public momentan este de 10% din baza de date Auger, semnificația statistică a cantităților măsurate este redusă, relativ la ceea ce poate fi obținut cu o bază de date completă, dar numarul de evenimente este comparabil cu cel utilizat în câteva din primele publicații științifice ale Colaborării Pierre Auger.

Colaborarea Pierre Auger dorește să continue politica sa de a face publice datele experimentale în scopul accesului publicului larg și divers la acestea, pentru creșterea potențialului științific comun în viitor.

Link-uri:

[1] https://www.auger.org/opendata/

[2] https://www.auger.org

[3] https://www.auger.org/index.php/science

[4] https://labdpr.cab.cnea.gov.ar/ED/

[5] https://www.auger.org/opendata/analysis.php

[6] https://www.auger.org/opendata/display.php?evid=81847956000

Fotografii ale Observatorului Pierre Auger (CC BY-SA 2.0):

https://www.flickr.com/photos/134252569@N07/21948576246/in/album-72157656013297308/

PA_174

PA_071

https://www.flickr.com/photos/134252569@N07/1946

Călătoria prin Univers a particulelor de radiație cosmică: de la sursă extra-galactică la detecția indirectă de pe Pământ

Ilustrație artistică. ©Lucian Muntean/ Gina Isar/ISS

Cercetare și artă contemporană prin pictură.

Lucrare realizată de artistul Lucian Muntean în colaborare cu Gina Isar (ISS), în cadrul proiectului Noaptea Cercetătorilor 2020 „Doing Research at Midnight in ROmania” – DoReMi-RO.

Abstract
Razele cosmice sunt particule subatomice care își au originea în galaxia noastră sau într-o extragalaxie. Sursele lor pot fi cele mai violente corpuri cosmice, precum o gaură neagră sau o supernovă. Particulele primare de radiații cosmice pot fi de la nuclee de hidrogen până la nuclee de fier, care pot atinge energii ultra înalte de până la 10^20 eV. La intrarea în atmosferă a unei astfel de particule cosmice, la interacția cu atomi și molecule din atmosferă, aceasta se dezintegrează printr-o cascadă în avalanșă într-o succesiune de alte particule secundare elementere, precum electroni, miuoni, neutrini etc. Atmosfera devine așadar calorimetrul nostru natural pentru observarea așa-numitelor jerbe atmosferice, care prin intermediul lor radiațiile cosmice primare sunt detectate indirect de pe Pământ, prin diferite tehnici de detecție, care măsoară particulele secundare ce ajung la sol (i.e. detectori hibrizi la sol), care observă noaptea fără lună plină radiația UV produsă în atmosferă prin excitarea moleculelor de azot de către electronii și pozitronii jerbelor atmosferice (i.e telescoape optice), care înregistrează undele electromagnetice produse prin devierea electronilor și pozitronilor în câmpul magnetic al Pământului (i.e. antene radio). Toate aceste ipostaze și metode de detecție se regăsesc în câteva ilustrații artistice realizate în acuarelă, cu aplicație la Observatorul Pierre Auger, cel mai mare experiment de radiație cosmică din lume, localizat în pampasul argentinian, lângă orașul Malargüe, o zonă fără poluare industrială sau alte perturbări luminoase sau sonore, cu condiții de mediu prielnice pentru măsurători indirecte ale mesagerilor cosmici, utilizând tehnici hibride și complementare de detecție pe o suprafață de 3000 km^2.

Demersul artistic
Pentru a realiza aceste ilustrații artistice, care să evidențieze cele menționate mai sus, a fost nevoie în primul rând să înțeleg tot acest proces elaborat, de la generarea radiațiilor cosmice, traseul lor prin Univers și dispersia sub formă de jerbe în atmosfera Pământului, apoi detecția lor la sol. În perioada de documentare, care a durat mai bine de o lună, Gina Isar, specialist în aceste probleme, mi-a furnizat articole, reprezentări grafice și aspecte tehnice despre aparatura de detecție, dar mai ales mi-a explicat în detaliu și mi-a răspuns la toate nelămuririle. A urmat partea de lucru efectiv, care a fost în sine o nouă provocare și anume de a transpune în imagini vizuale aspecte și detalii care practic sunt invizibile.
E paradoxal cum funcționează creierul uman, cum poți prin intermediul imaginației și al creativității să faci o așa călătorie grozavă, de la o gaură neagră de undeva din Univers să străbați galaxia până în Argentina, la Observatorul Pierre Auger, în interiorul tancului de detecție și al ochiului telescopului, tu fiind defapt acasă, în București…
A rămas ca tot ceea ce am vizualizat în minte să transpun pe hârtia de acuarelă. Era fascinant să văd cum în pelicula de apă de pe suprafața colii de hârtie, culoarea rămasă în urma pensulei făcea să apară treptat gaura neagră, fascicolul de radiații, stelele și corpurile cerești din galaxie, apoi jerba în cascadă la intrarea radiațiilor în atmosfera terestră, laserul de calibrare al telescoapelor, a căror ochiuri detectau semnal, rețeaua tancurilor de detecție cu apă pură și ce se întâmplă în ele, cu antenele în emisie și toate astea într-un peisaj arid al pampasului argentinean, pe timp de noapte.
Au rezultat șase lucrări secvențiale de dimensiune 30×40 cm și o lucrare finală pliabilă, ce redă o secțiune pe vertical, de dimensiune 21×140 cm.

Copyright: Lucian Muntean/ Gina Isar/ISS

Notă: Aceste ilustrații artistice pot fi preluate pentru a fi utilizate exclusiv în scopuri educaționale și de conștientizare a fizicii ilustrate. Sursa ilustrațiilor și creditul autorilor este absolut necesar a fi menționat la utilizare.

Persoană de contact (ISS): Dr. P. Gina Isar <isar[at]spacescience[dot]ro>

Galerie foto:

Premiul Nobel 2020 în Fizică acordat pentru descoperirea găurilor negre

Imagine concept a unei găuri negre realizată de Laurențiu Caramete

Anul acesta, premiul Nobel pentru Fizică, anunțat în luna octombrie, a fost împărțit între Roger Penrose, de la Universitatea Oxford din UK, „pentru descoperirea conform căreia formarea de găuri negre constituie o predicție solidă a teoriei relativității generale” și Reinhard Genzel, de la Institutul Max-Planck pentru Fizică Extraterestră din Germania, împreună cu Andrea Ghez, de la Universitatea California din USA, „pentru descoperirea unui obiect supermasiv, compact în centrul galaxiei noastre”, conform comunicatului oficial de presă.

Cei trei laureați care împart anul acesta Premiul Nobel în Fizică au contribuit la descoperirea unora dintre cele mai exotice obiecte din Univers, găurile negre.

În  anul 1965, la 10 ani după moartea lui Albert Einstein, Roger Penrose a reușit să demonstreze existența și să descrie în detaliu formarea și proprietățile găurilor negre, pornind de la teoria relativității și folosind metode matematice revoluționare. Astfel, Penrose a arătat că aceste obiecte super-masive, care captează tot ce intra în ele și în interiorul cărora legile fizicii clasice nu se mai aplică, sunt o consecință directă a teoriei relativității generale a lui Einstein. Articolul în care Roger Penrose şi-a publicat rezultatele este considerat și astăzi ca fiind cea mai importantă primă contribuție la teoria relativității de după apariția sa.

Douăzeci și cinci de ani mai târziu, în 1990, Reinhard Genzel şi Andrea Ghez au condus două echipe de astronomi care au studiat, independent una de cealaltă, centrul galaxiei noastre, mai exact regiunea denumita Sagittarius A*. Cele două echipe au observat comportamentul atipic al stelelor din această regiune centrală a galaxiei noastre, și au dedus că acestea se află în vecinătatea unui obiect super masiv, compact, cu o masă de câteva milioane de ori mai mare decât a Soarelui, ce ocupă o regiune cam de dimensiunile Sistemului nostru Solar. Până în prezent, singurul obiect ale cărui caracteristici pot explica topologia și dinamica acestei regiuni, este o gaura neagră super masivă.

Descoperirea acestui obiect compact este importantă nu doar pentru că probează teoria lui Einstein și calculele lui Penrose, ci și pentru că limitele tehnologice de detecție și de prelucrare de date existente în acel moment au fost depășite la realizarea observațiilor, ducând astfel mai departe la progresul astrofizicii observaționale.

Institutul de Științe Spațiale(ISS) este implicat activ în studiul astrofizicii în general și al găurilor negre masive si super masive în particular, având contribuții precum noi concepte si teorii ale găurilor negre, cataloage de mase de găuri negre sau simulări ale formarii, creșterii si evoluției lor. De asemenea, ISS se afla în topul cercetărilor spațiale în domeniu, de exemplu prin participarea la misiunea spațiala LISA, construită de Agenția Spațială Europeană, misiune ce își propune să studieze semnale de unde gravitaționale provenite de la ciocnirea de obiecte masive, inclusiv găuri negre, si să identifice mecanismele de formare si evoluție a găurilor negre de la crearea lor pana în prezent. Agenția Spațiala Romana (ROSA) susține în permanență contribuțiile României la cercetările spațiale, inclusiv la misiunea LISA, tara noastră fiind astfel ancorată în cercetările de pionierat ale studiului undelor gravitaționale din spațiu.

Persoană de contact: dr. Laurențiu Caramete <lcaramete[at]spacescience[dot]ro>

 

Colaboratori români ai Observatorului Pierre Auger operează integral de la ISS detectorii Auger

Cercetători români la activități operaționale Auger de la ISS

În perioada 9-26 August, 2020, cercetători români, membri ai colaborării Pierre Auger, din cadrul a doua institute de pe platforma de Fizică de la Măgurele, Dr. Paula-Gina Isar în colaborare cu studentul MSc. Dragoș Hîrnea de la ISS-Filială INFLPR și Dr. Alexandru Gherghel-Lascu, respectiv Dr. Denis-Iulian Stanca de la IHIN-HH, au preluat integral în cadrul unei ture operaționale Auger – în premieră în România, de la ISS – operațiile de control și monitorizare de la distanță a telescoapelor de fluorescență si a detectorilor lidar, o parte esențială a experimetului Pierre Auger.

Observatorul Pierre Auger este cel mai mare experiment de radiații cosmce din lume, care studiază efectele atmosferice si proprietățile fizice ale celor mai energetice particule elementare de origine cosmică, cu energii de până la 1020 eV.

Misiunea colaborării internaționale Pierre Auger, la care participă peste 500 de cercetători din întreaga lume, printre care și cercetători români de la două institute naționale de cercetare de pe Platforma de Fizică de la Măgurele (Institutul Național pentru Fizică și Inginerie Nucleară “Horia Hulubei” – IFIN-HH și Institutul de Științe Spațiale – Filială INFLPR) și de la Universitatea Politehnica București, este de a desluși originea, sursele și proprietățile fizice ale particulelor cosmice care penetrează atmosfera Pământului. Acestea dezvoltă jerbe de particule secundare, cele mai energetice distribuindu-se pe suprafața solului pe zeci de kilometri pătrați.

Pentru a măsura astfel de evenimente foarte rare, ale căror energii sunt printre cele mai mari observate vreodată (peste 1018 eV), a fost construit experimentul Pierre Auger în pampasul Argentinian, lânga orașul Malargüe. Experimentul acoperă o suprafață de peste 3000 km2 cu detectori superhibrizi, precum: detectori Cerenkov cu apă pentru măsurarea particulelor secundare care ajung la sol, telescoape optice pentru observarea luminii UV generată în atmosferă, detectori lidar pentru monitorizarea atmosferei și antene radio pentru înregistrarea undelor radio. În timp ce detectorii Cerenkov și antenele radio lucrează continuu și automat 24 din 24 de ore, telescoapele optice sunt operate numai pe timp de noapte și fără lună plină.

Centrul de remote control Auger de la ISS oferă suport la turele operaționale Auger atât colaboratorilor din țară, cât și celor din alte state membre Auger. Centrul regional de la ISS este functional din 2019, fiind complet echipat si avizat conform standardelor Auger cu aparatură modernă hardware și software, asigurând operatorilor Auger condiții confortabile de lucru.

Persoană de contact: Dr. Gina Isar <gina.isar[at]spacescience.ro>, Responsabil Instituțional (ISS) Auger

Galerie foto:

Centrul de remote control Auger de la ISS
De la stânga la dreapta: MSc. Dragoș Hîrnea, Dr. Paula-Gina Isar, Dr. Denis-Iulian Stanca, Dr. Alexandru Gherghel-Lascu

Misiunea ESA/Euclid: Un alt pas către lansare

Satelitul Euclid. Credit foto: Airbus

Misiunea ESA/Euclid a atins un nou obiectiv. Cele două instrumente ale sale, NISP (Near Infrared Spectrometer and Photometer) și VIS (Visible Imager), au fost complet realizate, testate și livrate de compania Airbus Defence and Space în Toulouse (Franța), unde sunt în prezent integrate cu telescopul, pentru a definitiva configurația misiunii.

Utilizând studiul complementar al undelor gravitaționale primordiale (care măsoară distorsiuni ale imaginii galaxiilor datorate distribuției materiei din Univers) și a oscilațiilor acustice ale barionilor (care determina gradul de clasterizare a galaxiilor), Euclid va realiza imagini 3D ale evoluției componentelor materiei întunecate și a energiei întunecate. Acestea vor permite estimarea expansiunii accelerate a Universului cu o acuratețe fără precedent.

Euclid este o misiune de Astronomie și Astrofizică de clasă medie a Agenției Spațiale Europene (ESA).

Institutul de Științe Spațiale (ISS), sub egida Agenției Spațiale Române (ROSA), participă la Misiunea Euclid încă din faza de selecție de către ESA (2007), dezvoltând metode de analiză și interpretare științifică a datelor experimentale.

Comunicatul de presă al ESA în limba engleză este disponibil aici.

Mai multe detalii pentru fiecare instrument în parte sunt disponibile aici.

Persoană de contact (ISS): Dr. Lucia A. Popa <lpopa[at]spacescience[dot]ro>

Galerie foto:

Instrumentul NISP. Credit foto: ESA
Una din componentele CCD ale instrumentului VIS. Credit foto: ESA

„Noaptea Cercetătorilor” – Ediția 2020

În data de 27 noiembrie 2020 va avea loc evenimentul european „Noaptea Cercetătorilor”, sub deviza “Doing Research at Midnight in ROmania – DoReMi-RO”.

Evenimentul își propune să arate publicului larg ce înseamnă să fii cercetător și cât de interesantă și provocatoare este știința si tehnologia înca din școală, prin intermediul a unor variate activități multidisciplinare, precum observații astronomice, experimente interactive, jocuri creative, seminarii și conferințe, dar nu numai!

Evenimentul este organizat de Universitatea „Alexandru Ioan Cuza” din Iași – în calitate de coordonator al unui Consorțiu academic național format din opt Universități și șapte Institute de Cercetare, precum: Universitatea „Lucian Blaga” din Sibiu (ULBS), Universitatea de Vest din Timișoara (UVT), Universitatea Babeș-Bolyai din Cluj-Napoca (UBB), Universitatea din Craiova (UCV), Universitatea din București (UB), Universitatea „Ștefan cel Mare” din Suceava (USV), Universitatea Maritimă din Constanța (CMU),  Institutul Național de Cercetare pentru Fizica Laserilor, Plasmei și  Radiației, Măgurele (INFLPR),  Institutul Național de Cercetare-Dezvoltare pentru Fizica Pământului,  Măgurele (INCDFP),  Institutul de Fizică Atomică, Măgurele (IFA),  Institutul Național de Cercetare Dezvoltare pentru Fizica Materialelor,  Măgurele (INCDFM),  Institutul de Științe Spațiale, Măgurele (ISS), Institutul Național de Cercetare-Dezvoltare pentru Optoelectronică,  Măgurele (INOE 2000) și Institutul Național de Fizică și Inginerie Nucleară „Horia Hulubei”,  Măgurele (IFIN-HH).

Pe lângă activitățile desfășurate la București, alături de celelalte institute de cercetare de pe Platforma de Fizică de la Măgurele, Institutul de Științe Spațiale (ISS) contribuie anul acesta și la extinderea ariei de diseminare a evenimentului “Noaptea Cercetătorilor” cu ajutorul a cinci noi colaboratori pasionați de educația STEAM (Știință, Tehnologie, Inginerie, Arte și Matematică), care ni s-au alăturat în proiect din învățământ și domeniul Astronomiei, precum: Asociația “Ucenicul Astronom” (Miercurea Ciuc), Asociația “Astroclub Meridian 0” (Oradea), Colegiul Național “Ion Luca Caragiale” (Ploiești), Colegiul Național “Barbu Știrbei” (Călărași), Școala Gimnazială “Zaharia Stancu” și Liceul Tehnologic “Virgil Madgearu” (Roșiorii de Vede).

Activitatea la nivel de proiect se va desfășura în 24 de orașe din România și face parte din seria de evenimente finanţate de către Comisia Europeană prin Programul Cadru de Cercetare și Inovare H2020 (2014 – 2020), acțiunile Marie Sklodowska-Curie.

În funcție de situația crizei sanitare cu covid-19 în perioada de desfăsurare a evenimentului, activitatea va avea loc în condiții normale, restrânse sau online.

Persoană de contact (ISS): Paula Gina Isar <isar[at]spacescience[dot]ro>

Afiș cu sigle Colaboratori ISS și Parteneri media:

 

JWST Master Class: varianta locală la ISS, România

Organizatori:

Laurențiu Caramete, Bogdan Dumitru și Răzvan Balașov de la Institutul de Științe Spațiale (ISS)

Marco Sirianni și Tim Rawle de la  Agenția Spațială Europeană (ESA)

Data: 17-18 februarie 2020

Locație: Institutul de Științe Spațiale, Măgurele

Abstract:

Lansarea telescopului spațial James Webb (en. James Webb Space Telescope – JWST) și, de asemenea, deschiderea procesului de submitere a propunerilor științifice (Cycle1 GO) vor începe curând. Pentru acest eveniment, ISS in colaborare cu ESA pregătește un workshop în România pentru instruirea comunitatea științifică. Instruirea constă în dezvoltarea abilităților necesare pentru folosirea uneltelor misiunii spațiale (APT și ETC, unelte cu grad de complexitate ridicat) și pentru a stimula propuneri de idei.

Pe durata acestui workshop local, participanții vor fi familiarizați cu statutul misiunii JSWT și cu instrumentele științifice de la bord (NIRCam, NIRSpec, NIRISS și MIRI). În plus, vor fi prezentate și discutate atât uneltele disponibile pentru propuneri, cât și modurile științifice de observare.

Participarea se face pe baza înregistrării (Formular de inregistrare – Clic aici). Nu există nici o taxă de participare. Întregul workshop se va desfăsura în limba engleză. Vă rugăm să utilizați formularul de mai jos și să furnizați câteva informații despre interesele și întrebările dvs. științifice. Data limită pentru înregistrare este 28 ianuarie 2020.

 

În cazul în care data limită de înscriere a fost depășită vă puteți înregistra la mailul bogdan[dot]dumitru[at]spacescience[dot]ro.

Aniversarea a 20 de ani de la înființarea Observatorului Pierre Auger

Ilustrație artistică realizată de Sandbox Studio Chicago cu Pedro Rivas
Ilustrație artistică realizată de Sandbox Studio Chicago cu Pedro Rivas

Observatorul Pierre Auger sărbătorește anul acesta aniversarea a 20 de ani de la înființare. Ceremonia oficială, târgul de știință și simpozionul științific au loc în Malargüe (Provincia Mendoza, Argentina), în perioada 14-16 Noiembrie 2019, la sediul Observatorului Pierre Auger.

Observatorul Pierre Auger este cel mai mare detector de radiații cosmice din lume, acoperind o suprafață de 3000 km2. Experimentul este operat de o colaborare internațională cu peste 400 de cercetători din 17 țări (printre care și România din anul 2014, reprezentată în prezent de IFIN-HH și ISS). Scopul Observatorului constă în studiul celor mai energetice particule cosmice cu energii de până la (și peste) 1020 eV. Datele obținute în cadrul Observatorului Auger au contribuit la avansarea înțelegerii fenomenelor fizicii energiilor înalte asociate cu cele mai violente procese din Univers. Au fost realizate descoperiri importante în diferite domenii științifice, însa cu toate acestea sursele particulelor cu energii ultra-înalte nu au fost identificate înca. În plus, proprietățile producției de multiparticule sunt studiate la energii care nu pot fi obținute la acceleratoarele de particule de la sol, căutând astfel noi sau neașteptate schimbări în interacțiile hadronice. Prezenta îmbunătățire a Observatorului Pierre Auger, AugerPrime, va ajuta la găsirea unor răspunsuri la întrebările neelucidate și va facilita accesul la o imagine unică și consecventă a înțelegerii Universului.

Mai multe informații despre eveniment aici.

În premieră în România!

Ilustrație a distanței dintre Institutul de Științe Spațiale și Observatorul Pierre Auger din emisfera sudică.
Ilustrație a distanței dintre Institutul de Științe Spațiale din Măgurele, România, și Observatorul Pierre Auger din Malargüe, Argentina.

Azi sunt două săptămâni de când o echipă de cercetători de la ISS (dr. Gina Isar – cercetător științific II și Dragoș Hîrnea – masterand, asistent de cercetare) operează și monitorizează în timp real, în premieră în România, la o distanță foarte mare de cca. 13.000 km, telescoapele optice și LIDAR ale Observatorului Pierre Auger.

Auger este cel mai mare experiment de radiații cosmice din lume, ce se întinde pe o suprafață de 3000 km2 în pampasul Argentinian. După 15 ani de funcționare, experimentul super-hibrid se află în faza de upgrade pentru îmbunătățirea detectorilor și sporirea statisticii evenimentelor măsurate cu energii peste 1019 eV (energii care nu pot fi obținute la cel mai mare accelerator de particule LHC de la CERN).

România a devenit țară membră a colaborării internaționale Pierre Auger în 2014, și o opțiune pe harta punctelor de comandă și control remote a Observatorului din 2019, alături de alte 9 state membre Auger din Europa și America.

Avantajele operarii remote a telescoapelor Auger, care funcționează numai noaptea, constau în: costuri reduse de deplasare, timp de lucru redus prin împărțirea programului cu un alt grup remote sau on-site la Observator (diferența de fus orar în România este de 6 ore cu plus față de Argentina), vizite de lucru inter-instituționale în rândul colaboratorilor Auger.

Centrul de remote control Auger de la ISS oferă suport la turele operaționale Auger atât colaboratorilor din țară, din IFIN-HH și UPB, cât și celor din alte state membre Auger. Nu în ultimul rând, centrul este de mare inters în randul tinerilor pentru educație, precum o grupă de studenți de la UPB care ne-au trecut deja pragul. Centrul regional ISS este complet echipat modern atât hardware cât și software, asigurând operatorilor Auger condiții confortabile de lucru.

Mai multe despre Auger aici: www.auger.org, https://www2.spacescience.ro/?p=2879

Persoană de contact: Dr. Gina Isar <gina.isar[at]spacescience.ro>, Responsabil Instituțional Auger

Galerie foto:

Participarea Institutului de Științe Spațiale la misiunea spațială LISA

Ilustrație al unui satelit al misiunii LISA. © AEI/MM/exozet; GW simulation: NASA/C. Henze

În perioda 29 – 30 Ianuarie 2018, în cadrul conferinței “LISA Consortium Meeting – LISA Phase A Activities”, desfăsurată la Institutul Max-Planck de Fizică Gravitațională (Institutul Albert Einstein) din Hanovra, Germania, Institutul de Științe Spațiale a fost reprezentat de către Dr. Ion Sorin ZGURĂ, Director al Institutului de Științe Spațiale, Dr. Laurențiu Ioan CARAMETE, conducător al Laboratorului de Cosmologie și Fizica Astroparticulelor și Dr. Eugeniu Mihnea POPESCU, conducător al Laboratorul de Astrofizică, Fizica Energiilor Înalte și Tehnologii Avansate. În cadrul întâlnirii a fost prezentat stadiul viitoarei misiuni spațiale LISA, misiune de tip L (Large) a Agenției Spațiale Europene, precum și perspectivele contribuției fiecărei parți angajate în colaborare.

LISA (Laser Interferometer Space Antenna) va fi primul observator spațial de unde gravitaționale alcătuit din 3 sateliți uniți prin interferometre laser, asezați în formă triunghiulară, la distanțe de 2.5 milioane de kilometri, care vor urma Pămantul în orbita sa în jurul Soarelui pentru un studiu aprofundat al Universului Gravitațional. Sateliții vor avea caracteristici similare misiunii LISA Pathfinder, care a zburat cu succes în Decembrie 2015 și a testat pentru un an cele mai importante componente tehnice.

Institutul de Științe Spațiale va contribui la misiunea LISA cu sistemul CAS (Constellation Acquisition Sensor), care va avea rolul de verificare a alinierii celor 3 sateliți, asigurând achiziția semnalului laser pe detectorii interferometrici. Împreuna cu sistemul STR (Coarse Star Tracker), CAS va asigura vizualizarea semnalului laser în timpul manevrelor de scanare. Această contribuție este pe deplin susținută de către Agenția Spațială Română (prin programele “Romanian Incentive Scheme”, PRODEX și programe naționale) și se încadrează excelent în strategia instituțională, cât și în strategia națională de cercetare-dezvoltare a României.

La cererea expresă a consorțiului LISA, Agenția Spațială Română (ROSA) a desemnat în calitate de reprezentant în cadrul “LISA National Agency Board” (organism ce cuprinde reprezentanți de la fiecare agenție spațială natională din consorțiu) pe domnul Dr. Marius-Ioan Piso, Președinte și CEO al ROSA, recunoscut de comunitatea științifică ca fiind unul dintre inițiatorii principali ai cercetărilor de radiație gravitațională începând cu anii ’80. De asemenea, Dr. Ion Sorin ZGURĂ, Director al Institutului de Științe Spațiale, a fost numit delegat în cadrul “LISA National Agency Board”.

Misiunea LISA este propusă de un consorțiu internațional format din cercetători din Germania, Italia, Franța, Elveția, Marea Britanie, Spania, Danemarca, Olanda, România, Belgia, Portugalia, Suedia, Ungaria și Statele Unite ale Americii. Lansarea este preconizată pentru 2034, cu o durată de 4 ani, însa misiunea va fi concepută să funcționeze cel puțin 10 ani.

Persoană de contact: Dr. Laurențiu Ioan CARAMETE <lcaramete[at]spacescience[dot]ro>

Galerie foto

Dr. Laurențiu Ioan Caramete (stanga), Dr. Ion Sorin Zgură (dreapta) at „LISA Consortium Meeting – LISA Phase A Activities”
Prezentarea contribuției Institutului de Științe Spațiale la “LISA Consortium Meeting – LISA Phase A Activities” sustinută de Dr. Laurențiu Ioan Caramete